Homological properties of modules over group algebras
نویسنده
چکیده
for each f, g ∈ L (G). For the theory of this Banach algebra, see [8], [14], [17], and [2, §3.3], for example. There are many standard left (and right) Banach L(G)-modules. Here we determine when these modules have certain well-known homological properties; we shall summarize some known results, and establish various new ones. In fact, we are seeking to characterize the locally compact groups G such that various modules are, respectively, projective, injective, and flat. Our conclusions are summarized in a table at the end of the paper.
منابع مشابه
Some Properties of $ ast $-frames in Hilbert Modules Over Pro-C*-algebras
In this paper, by using the sequence of adjointable operators from pro-C*-algebra $ mathcal{A} $ into a Hilbert $ mathcal{A} $-module $ E $. We introduce frames with bounds in pro-C*-algebra $ mathcal{A} $. New frames in Hilbert modules over pro-C*-algebras are called standard $ ast $-frames of multipliers. Meanwhile, we study several useful properties of standard $ ast $-frames in Hilbert modu...
متن کاملGorenstein homological dimensions with respect to a semi-dualizing module over group rings
Let R be a commutative noetherian ring and Γ a finite group. In this paper,we study Gorenstein homological dimensions of modules with respect to a semi-dualizing module over the group ring . It is shown that Gorenstein homological dimensions of an -RΓ module M with respect to a semi-dualizing module, are equal over R and RΓ .
متن کاملG-frames in Hilbert Modules Over Pro-C*-algebras
G-frames are natural generalizations of frames which provide more choices on analyzing functions from frame expansion coefficients. First, they were defined in Hilbert spaces and then generalized on C*-Hilbert modules. In this paper, we first generalize the concept of g-frames to Hilbert modules over pro-C*-algebras. Then, we introduce the g-frame operators in such spaces and show that they sha...
متن کامل*-frames in Hilbert modules over pro-C*-algebras
In this paper, by using the sequence of multipliers, we introduce frames with algebraic bounds in Hilbert pro-$ C^* $-modules. We investigate the relations between frames and $ ast $-frames. Some properties of $ ast $-frames in Hilbert pro-$ C^* $-modules are studied. Also, we show that there exist two differences between $ ast $-frames in Hilbert pro-$ C^* $-modules and Hilbert $ ...
متن کامل‘homological Properties of Quantised Borel-schur Algebras and Resolutions of Quantised Weyl Modules’
We continue the development of the homological theory of quantum general linear groups previously considered by the first author. The development is used to transfer information to the representation theory of quantised Schur algebras. The acyclicity of induction from some rank-one modules for quantised Borel-Schur subalgebras is deduced. This is used to prove the exactness of the complexes rec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007